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Abstract. It is shown that the specmm of thermal surface height fluctuations on a supercooled 
liquid close to the glass transition contains a narrow quasielastic component, which describes 
slow fluctuations freezing in at the glass transition. The s p e c ”  is obtained from a dynamic 
susceptibility which is calculated using the theory of viscoelastiaty. 

1. Introduction 

When a supercooled melt is cooled through the glass transition range, part of the thermal 
fluctuations of the liquid in metastable equilibrium is frozen in. As a result, for example, in 
a glassy material static density fluctuations of long wavelength exist [I-71. They represent 
an intrinsic property of a glass in bulk. In this paper we address the question of whether an 
analogous effect occurs at a glass surface. At the surface of a liquid fluctuations of vertical 
displacement are caused by thermally excited capi l lq  waves (ripplons). As is shown in the 
present paper, at the surface of a very viscous supercooled liquid near the glass transition 
these fluctuations become very slow and are finally frozen in at the glass transition. We 
calculate the spectrum of these slow fluctuations of vertical surface displacement and derive 
their frozen-in intensity in the glassy state, which is a measure of the intrinsic roughness of 
a glass surface. 

The freezing in of long-wavelength density fluctuations in bulk glass can be 
treated theoretically using the theory of viscoelasticity, or, with greater precision, of 
thermoviscoelasticity [8], in combination with the fluctuation dissipation theorem. We 
follow a similar route here to calculate the intrinsic surface roughness of glass prepared 
by cooling of a melt. 

To our knowledge, the validity of the viscoelastic theory for density fluctuations in bulk 
has not been contested for inorganic glasses like fused quartz and borosilicate glasses [9]. 
However, in polymeric glasses and in organic glasses of molecules of low molecular weight 
strong polarized light scattering at small wavevectors has been observed [4-71, which cannot 
be explained by the viscoelastic theory. In these cases the result of the viscoelastic theory 
is only a lower l i t  to the observed scattering in bulk. At present the physical origin of the 
excess scattering is not well understood. It is left to future experimental investigations to 
show whether a similar situation exists with regard to frozen-in surface height fluctuations, 
It is possible that, for a certain class of glass forming materials, the result derived in this 
paper also represents only a lower limit. 
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2. Linear response theory 

The spectrum of thermal surface height fluctuations is calculated by applying linear response 
theory to the reaction of a liquid surface to an external force. The surface extends in the 
x and y directions, with the liquid at rest filling the half space z < 0. Let P2(y, t ) ,  with 
r = xe, 4- ye,, be a position- and time-dependent external force field (per unit area) acting 
on the liquid surface, and 
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1 
Pi(r, 1 )  = - pL(k, t)exp(ik.  T )  with k = krer + k,e, ( I )  

& k  

its spatial Fourier representation. A is the total surface area. In the usual way, periodic 
boundary conditions are assumed. The corresponding perturbation Hamiltonian reads 

Hi(6) = - /[,,dZrPz(r. ~ ) u ~ ( T )  = - pz(-k, t)rizIk) (2) 
k 

where u ~ ( T )  is the vertical surface displacement and &(k) its spatial Fourier transform. For 
a harmonic time dependence of a weak external force 

pz(k ,  I )  = P,,oexp(-iot) (3) 

&(k ,  t )  = P,,oe-iu'Xzr(k. w) 

to linear approximation the resulting surface displacement is given by 

(4) 
where Ll(k,  o) is the dynamic susceptibility of the vertical surface displacement with 
respect to a surface force of wavevector k parallel to the surface plane, and angular 
frequency w. According to the classical fluctuation dissipation theorem the imaginary part 
xl:(k, w )  of this dynamic susceptibility determines the spectrum SJk, w )  of thermal surface 
displacements of wavevector k :  

t m  
dtexp(iwt)(u,(k. t)u,(-k,O)) = ZkBTX::(k,w)/w. ( 5 )  

The following sum rule expresses the total intensity of the spectrum in terms of the static 
susceptibility x&. w = 0): 

1, Szz(k, 0) = 

From S,,(k) the mean square vertical surface displacement is obtained as 

The dynamic susceptibility Xrz(k. w) can be calculated from the solution of the linearized 
hydrodynamic equations which govern the motion of the liquid surface. For an external 
surface force 

(8) Pz(x, t )  = P,.oexp[i(kx - wr) ]  

the solution for the vertical surface displacement has the same form with a complex, 
frequency-dependent amplitude: 

uz(x, t )  = u,.oexp[i(kx - ot)]. (9) 

X&, 0) = Uz.o/Pr.o. (10) 

The dynamic susceptibility is obtained as the amplitude ratio: 
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3. Calculation of S,,(k, w )  

We first neglect gravity. The calculation is an extension of the treatment of Rayleigh waves 
on the surface of an isotropic elastic medium [IO]. The supercooled liquid near the glass 
transition is described as a viscoelastic medium with frequency-dependent shear and bulk 
modulus G(w) and K ( o ) .  G(w) is related to a frequency-dependent shear viscosity q(o) 
by 

G(o)  = -ioq(w). (11) 

Here we assume that the properties of the supercooled liquid remain unaltered right up to 
the surface on the length scales of our interest. In addition, the effect of surface tension is 
taken into account. The surface tension a is assumed to be independent of frequency. The 
displacement field u ( x ,  z, f )  in the viscoelastic liquid is the sum of a transverse part 

(12) U&, z, 2 )  =&ex - ike,) exp[i(kx - ~ f )  + K ~ Z ]  

and a longitudinal part 

z11(X, Z, t )  = b(ike, + K l e 2 )  exp[i(kx - U t )  4- KiZl  

Kt = Jk2 - W z p / G ( W )  

(13) 
where the expressions for K~ and K I  read 

KI = Jk2 - O2p/Ci(O). (14) 
The real parts of K ,  and K] are the inverse penetration depths of the transverse and longitudinal 
components of the displacement field, respectively, and must be positive. C,(W) is the 
longitudinal elastic modulus, which in terms of shear modulus G(w) and bulk modulus 
K ( o )  is given by 

CI(O) = K ( w )  + $G(oJ). (15) 

p is the mean density. The coefficients a and b are determined by the boundary conditions 
at the liquid surface, which are 

and 

a,, = 0. 

The components of the stress tensor are 

Solving equations (16) and (17) for a and b, one obtains the following result for the dynamic 
susceptibility: 

The effect of gravity is easily included for the incompressible liquid ( K ( w )  + CO). It 
leads simply to the replacement of ak2  by (ak2 + pg), where g is the acceleration due to 
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gravity. Since K] + k in the incompressible limit, the expression for the dynamic surface 
susceptibility xri  including the effect of gravity can be written explicitly as 
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(21) 

where u(o) = q(w) /p  is the frequency-dependent kinematic viscosity of the viscoelastic 
liquid. In terms of a 'damping function' r ( k ,  o), defined as 

k l p  
1/2 Xrr(k9 U) = 

g k  + (ol /p)k3 - (o + 2iu(o)k2)2 - 4u2(w)k4 (1 - i o / u ( w ) k 2 )  

r ( k ,  o) = 4u(w)k2 + (i/o)(2u(w)k2)z ( 1 - ( 1 - - " G k Z ) ' " )  (") 

and the frequency w,(k)  of the surface wave of an ideal incompressible fluid, given by 

this result can be written as 

The square root occurring in the damping function derives from the ansatz equations (12- 
14), and is typical of a surface response function. As shown below, the corresponding branch 
cut of ,yzr(k, w )  in the complex w plane is responsible for the appearance of a continuous 
band in the spectrum of surface height fluctuations in the elastic limit (G(o) - G(oo)). 
The band describes the emission of transverse sound waves into the bulk elastic medium 
by excitation of its surface. 

From the expression (21) the static susceptibility Xzr(k, w = 0) and the total intensity 
Sz,(k) (equation (6)) are obtained as 

For the mean square vertical surface displacement 2 one calculates the result 

where an upper cut-off wavevector k, is introduced. plays the role of a lower 
cut-off wavevector. For 01 = 0.1 kg sKz and T = I@ K, the root mean square displacement 

@)'" is of the order of 5 A, depending only weakly on k,. Denoting the denominator of 
expression (21) by D ( k ,  w ) ,  the spectrum S,,(k, U ) ,  equation (5) ,  is written as 

"his result can be shown to be equivalent to an unwieldy expression obtained by Harden 
et al [ 111 in a different way. These authors did not calculate the spectrum via the dynamic 
susceptibility, but derived their result directly from the equations of motion of the theory 
of viscoelasticity, augmented by terms describing fluctuating stresses. 
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Flgure 1. The spectrum S , , ( k , o )  of vertical surface height fluctuations in @on 111. 

4. Discussion of the spectrum for a Maxwell-Debye model 

To discuss the variation of the spectrum S,,(k. w )  with increasing viscosity we apply a 
simple Maxwell-Debye model, which has a single relaxation time 5 .  We neglect the small 
effects of a finite compressibility. For the Maxwell-Debye model, the frequency dependence 
of the kinematic viscosity ~ ( w )  is given by 

U0 u(w) = - 
1 - iws 

where uo is the low-frequency value of hydrodynamics. With equations (29) and ( l l ) ,  the 
relations 

W O / ?  = G ( m ) / p  = c?(m) (30) 

between VO, the high-frequency shear modulus G(m) and the velocity q(m) of high- 
frequency shear waves in bulk follow. The expression (21) for the dynamic susceptibility 
Xir(k,  w )  then contains, in addition to the relaxation rate ? - I ,  two characteristic frequencies, 
which can be chosen either as the hquency wg of the surface wave in an ideal fluid (equation 
(23)) and that of the hydrodynamic viscous shear mode 

(31) 2 o , ( k )  = uok 

or as w, and the frequency wt of the elastic shear mode for long relaxation time wtr >> 1, 
which is given by 

We are mainly interested in the domain of wavevectom accessible to tight scattering 
experiments (k = O( I@ cm-I)), in which the effect of gravity is completely negligible. In 
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this domain, the ratio o, /wt  is small compared to unity, since 
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w:/w: = klo 10 =cu/G(w) = O(10-' - 10%m). (33) 

In the region of wavevectors where the continuum theory is valid, klo is usually smaller 
than one. This may be different in the case of polymer solutions treated in [ I l l .  In the 
following discussion we assume the condition 

klo << 1 (34) 
to apply. As a function of the relaxation rate relative to these frequencies we find three 
Limiting cases of the spectrum S J k ,  w) .  In region I, where 

2w:/w, < 5-1 (35) 

holds, we have 

and 

This result is due to thermally excited capillmy waves in a liquid of low viscosity 112, 111. 
The condition T-' = 2w:/w, marks the point of transition to overdamped capillary waves 
[13], at which w, = 4 2  holds. In region U well below this point, viz. for 

0 1  << 5-I << 20:/ws (38) 
we find 

1 
x r z ( k , w )  = ~ ( 1  - iw /Y(k ) ) - ]  (39) 

and 

with the linewidth 2 y ( k )  given by 

2 y ( k )  = w:/wv = klo/T < us. (41) 
The contribution of the overdamped capillary waves to the spectrum S,,(k, w )  is quasielastic. 
The linear dependence of the linewidth y ( k )  on wavevector k is peculiar to overdamped 
capillary waves, and derives from the k dependence wg a k'I2. In region In with 

r-' << wI  (42) 

the spectrum is richer (figure l), although the quasielastic part of the spectrum is modified 

obtain the low-frequency part of the dynamic susceptibility as 
only slightly compared with region LI. Expanding in powers of ( y z ) - l  for w ,2 t - l  , we 

and the quasielastic part of the spectrum as 
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where the linewidth 
1 klo 
r 1 + klo /2  

2 y ( k )  = - (45) 

agrees to lowest order in klo with the result (41) in region II. We note that the results 
(43)-(45) also hold when condition (34) is not fulfilled. The quasielastic component given 
by equation (44) was overlooked in [ l l ] .  Unlike in region 11, the quasielastic line no longer 
exhausts the sum rule (26) .  The total intensity of the quasielastic line is slightly reduced to 

where the last expression holds for small klo. The intensity difference goes into contributions 
from the elastic Rayleigh surface wave and the continuum of bulk elastic shear waves. The 
Rayleigh wave frequency is given by 

WR = cOUt (47) 

ho(c) = (2 - 6')' - 4(1 - e2)1'2. (48) 

where 60 = 0.955 is the zero of the function 

For w NU i w R ,  the dynamic surface susceptibility is given by 

where the small effect of the surface tension CY is neglected. The corresponding contribution 
to the spectrum S J k .  U) is a pair of Lorentzians of half-width (Zr)-', centred at ~ O J R ,  

which are described by 

The numerical factor co/hb(co) has the value 0,109. The intensity of the two lines due to 
Rayleigh waves is a fraction 

0.218klo (51) 

0.282klo (52)  
of the total intensity (26) is found in the contribution of the continuum of the bulk elastic 
shear waves in the frequency regions jwI > cy. Taking the limit r + CO, this contribution 

of the total intensity (26). The missing fraction 

with s = m/wt 2 1. 
Below the glass transition of a supercooled highly viscous liquid, the average shear stress 

relaxation time exceeds the experimental time scale, e.g. of a calorimetric measurement. On 
this time scale, the quasielastic component of the fluctuation spectrum S,,(k, w ) ,  given by 
equation (44), becomes effectively elastic, corresponding to static, frozen-in fluctuations. 
Since the freezing in occurs at the glass transition temperature Tg, the intensity of the 
frozen-in surface height fluctuations of wavevector k is given by expression (46) for T = Tg, 
viz. 
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The validity of this result is not restricted to the Maxwell-Debye model, and also holds for 
a distribution of relaxation times. This follows from the general validity of the result (26) 
for the total spectral intensity, and (51). (52) for the intensity of the elastic Rayleigh wave 
and shear wave contributions, respectively. 
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